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                                                             Abstract 

Consider the below mentioned equation: 

          [                 ] = [                 ]    ----- (A) 

Historically in math literature there are instances where solutions have been 

arrived at by different authors for equation (A) above. Ref.no. (1) by A. Bremner & 

J. Delorme and Ref. no. (10) by Tito Piezas. The difference is that this article has 

done systematic analysis of equation (A) for n=2,3,4,5,6,7,8 & 9. While numerical 

solutions for equation (A) is available on “Wolfram math” website, search for 

parametric solutions to equation (A) in various publications for all n=2,3,4,5,6,7,8 

& 9 did not yield much success. The authors of this paper have selected six terms 

on each side of equation (A) since the difficulty of the problem increases every 

time a term is deleted on each side of equation (A). The authors have provided 

http://www.hrpub.org/
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parametric solutions for equation (A) for n=2, 3, 4, 5 & 6 and for n=7, 8 & 9 

solutions using elliptical curve theory has been provided. Also we would like to 

mention that solutions for n=7, 8 & 9 have infinite numerical solutions. 
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Degree two, n=2 

                                             =                    ----- (1) 

We have the below mentioned numerical solution: 

                                    (               )  (               )  

In the above let a=1, b=30 & c=31, Since 1+30=31 or (a+b=c) 

Hence we have (        )   (        )  -------------- (2) 

Let a= (30+t) and b=(1+kt) .Substituting for (a,b) & solving for ‘t’ in (a^2+ab+b^2) in  

right hand side of equation (2) above , we get parameterization of (a & b) given below. 

a (          ) (      )  

b (           ) (      ) 

c=    (          ) (      ) 

Also since (     )  (           )  (     )  , after substituting above values of 

 (a,b,c) we get the below mentioned parameterization of equation (A) for degree two. 

(          )  (           )  (          )   

(          )  (       )  

                                                (                     )  (       )  

For k=2 we get the below mentioned new numerical solution: 

                              (                     )   (                     )  



 

Degree three, n=3, 

First method: 

                                              =                    ---- (3) 

Let (a,b,c,d,e,f)=[(Ax+1),(Bx+1),(Cx+1),(Dx+1),(Ex+1),(Fx+1)] 

and 

(p,q,r,s,t,u)=[( Px+1),(Qx+1),(Rx+1),(Sx+1),(Tx+1),(Ux+1)] 

Let (           )  (           )      ( ) be known solution 

We have numerical solution,  (            )  (             )  

Substituting values of (a,b,c,d,e,f) &( p,q,r,s,t,u) in equation (3) above we get after  

simplification the below mentioned condition, 

    
[(           ) (           )]

 
           ----------- (5) 

Where, W  (                 )  (                 ) 

After substituting values of (           )     (           ) 

in equation (5)  we get  the solution                 x = - (1/5) 

Hence substituting values of (A, B, C, D, E, F) and (            ) in equation (3) above  

we get for x= (-1/5), 

[(   ) (    ) (    ) (    ) (    ) (     )]   

                                    [(     ) (    ) (    ) (    ) (     ) (     )]  

Substituting x= (-1/5) we get, 

                                     (              )  (            )  

Similarly for different numerical solutions for equation (4) we can get another value  

of ‘x’ from equation (5) and thus more numerical solutions. 

Second Method: 



                       =                    ----(3) 

Let (a,b,c,d,e,f)=[(Ax+1),(Bx-1),(Cx+1),(Dx-1),(Ex+1),(Fx-1)] 

& 

(p,q,r,s,tu)= [( Ax-1),(Bx+1),(Cx-1),(Dx+1),(Ex-1),(Fx+1)] 

Substituting values of (a,b,c,d,e,f) &( p,q,r,s,t,u) in equation (3) above we get after  

simplyfication the below mentioned condition, 

 (        )  (        ) ----------- (4) 

Equation (4) has the numerical solution,    (A,C,E)=(2,10,21) & (B,D,F)=(5,6,22) 

Hence substituting values of (A, B, C, D, E, F) we get the parametric form given below, 

[(    ) (    ) (     ) (    ) (     ) (     )]   

                                    [(     ) (    ) (     ) (    ) (     ) (     )]  

For x=1 we get, 

                                     (              )  (             )  

Degree four, n=4, 

                                       =                    ----(5) 

 

We have numerical solution given below, 

                    (                       )  (                       )  

In the above let  a=16, b=480, c=496. Since (16+480=496) or (a+b=c) 

So we have (        ) =       (   ) = (        )   -----(6) 

Let a=480+t and b=16+kt 

Hence parameterization (        ) on the right hand side of equation (6) we get 

a= (             )/(      ) 

b= (              )/(      ) 



c= (             ) (       ) 

      (     )   (          )  (                       )  (            )  

After substituting for (a,b,c) we get the below mentioned parameterization, 

[(             )    (              )   (             )     

          (               )  (       )^4= 

                                         (                              )*(       )^4 

For k=2 we get, 

(                            )  (                            )  

 

Degree five, n=5, 

                                       =                    ----(7) 

 

Consider equation                      ( )       (8) 

Let, 

a=   +Um+3B 

b=   -Um+3A 

c=   +Vm+3D 

d=   -Vm+3C 

e=   +Wm+3F 

f=   -Wm+3E 

t=T  +3T 

Substituting the values of (a,b,c,d,e,f) in equation (8) above we get, 

(         )  (          )  (          )   

(          )  (          )  (          )   



                             ( )  (    )   ----------- (9) 

We have known solution given below, 

         (           )   (                    )     (   )    ( )  

Since in equation (9) we have the parameter ‘m’, so when we substitute values of  

((A,B,C,D,E,F) in equation (9), the only unknowns are (u,v,w) , after simplification  

 of equation (9) we get the below conditions, 

(U+V+W)  = 4(D-F)   & 

U=2(D-F) 

V=2(2D-3B+F) 

W=2(-D+3B-2F) 

Since (D,B,F) = (119,7,-63) we get (U,V,W) = (364,308,56) 

Substituting the values of (A,B,C,D,E,F,U,V,W,T) in equation (9) above we get the below 

mentioned parameterization , 

(            )  (             )  (               )   

(              )   

(             )  (             )   (   )  (    )  ----------(10) 

We also have the below mentioned numerical solution, 

                                     (                    )    (   )  and   

                                     (                     )    (   )  

Using the new values (159,-61,127,-29,81,17) in place of (A,B,C,D,E,F) in equation (9)  

we get another set of values for (U,V,W) =(-92,284,-376) 

Substituting the above values in equation (9) we get another parametric equation  

given below, 

(             )  (              )  (             )   



(              )  (             )  (              ) 

  (   )  (    )     (  ) 

Since the right hand sides of equations (10) & (11) are equal, hence we can equate  

their left hand sides and we get the below mentioned (5-6-6) equation for degree n=5. 

(            )  (             )  (               ) 

 (              )   

(             )  (             )    

                (             )  (              )   

(             )    (              )  (             )   

(              )  

For m=2 we get, 

(                        )  (                        )  

 

 

Degree six, n=6, 

  There are parameter solutions to, 
 A1

6+ A2
6+ A3

6+ A4
6+ A5

6+ A6
6 = B1

6+ B2
6+ B3

6+ B4
6+ B5

6+ B6
6 ------ (2) 

 
Let,            
             A1 = a1a+b1b-c1 
             A2 = a3a+c3 
             A3 = a4a+c4 
             A4 = a1a-b2b+c2 
             A5 = a2a-b1b+c2 
             A6 = a2a+b2b+c2                        
              
             B1 = a1a+b1b+c1 
             B2 = a3a-c3 
             B3 = a4a-c4 
             B4 = a1a-b2b-c2 
             B5 = a2a-b1b-c2 
             B6 = a2a+b2b-c2   
 



            a2=ma1,a3=na1,a4=pa1,c1=qc2,c3=rc2,c4=tc2 
      As for this equation (2), the factorization is done as follows. 
  
(m,n,p,q,r,t) = (3, 1, -1, -2, -6, 3)  
 
240a1ac2(19c2

2+b2
2b2+2a1b2ba+4a2a1

2)*(21c2
2+b2

2b2+2a1b2ba+6a2a1
2) 

 
(m,n,p,q,r,t) = (3, 1, -1, -1, -5, 3)  
240a1ac2(14c2

2+6a1
2a2+2b2ba1a+b2

2b2)*(-12c2
2+4a1

2a2+2b2ba1a+b2
2b2) 

 
 (m,n,p,q,r,t) = (3, 1, -1, 2, -2, 3)  
240a1ac2(5c2

2+b2
2b2+2a1ab2b+6a1

2a2)*(-3c2
2+b2

2b2+2a1ab2b+4a1
2a2) 

 
 (m,n,p,q,r,t ) = (3, 1, -1, 3, -3, 1)  
240a1ac2(6c2

2+b2
2b2+2a1ab2b+6a2a1

2)*(-4c2
2+b2

2b2+2a1ab2b+4a2a1
2) 

 
 (m,n,p,q,r,t) = (3, 2, -4, 3, 2, 2)  
-240a1ac2(5c2

2+15a2a1
2+2ba1ab2+b2

2b2)*(3c2
2+5a2a1

2-2ba1ab2-b2
2b2) 

 
 (m,n,p,q,r,t) = (3, 3, -5, 3, 2, 2)  
-240a1ac2(3c2

2-b2
2b22a1ab2b+12a1

2a2)*(5c2
2+b2

2b2+2a1ab2b+22a1
2a2) 

 
  (m,n,p,q,r,t) = (3, 4, -6, 3, 2,  2)  
-240a1ac2(3c2

2+21a1
2a2-2b2a1ba-b2

2b2)*(5c2
2+31a1

2a2+2b2a1ba+b2
2b2) 

      
    Take c2=1 
     
    Case 1.      4a2a1

2+2a1b2ba+b2
2b2=19.................................... (3) 

 
    We can find infinitely many rational solutions of (3), then we obtain infinitely parameter 
solutions of (2). 
 
    Take x=2a1a,    y=b2b 
 
Then (3) becomes to x2+xy+y2=19........................................ (4) 
 
    (x,y) = (3,2) is a solution of (4). 
 
    We obtain parameter solution of (3) by using (a,b)=(3/(2a1),2/b2). And ‘k’ is parameter. 
          
                  
             A1=7k2b2

2-4a1
2 

             A2=-9k2b2
2-32kb2a1-68a1

2 
             A3=3k2b2

2+20kb2a1+44a1
2 



             A4=15k2b2
2+20kb2a1-28a1

2 
             A5=11k2b2

2-20kb2a1-52a1
2 

             A6= k2b2
2-44kb2a1-36a1

2 
          
             B1=-k2b2

2-16kb2a1-36a1
2 

             B2=15k2b2
2+16kb2a1+28a1

2 
             B3=-9k2b2

2-4kb2a1-4a1
2 

             B4=11k2b2
2+12kb2a1-44a1

2 
             B5=7k2b2

2-28kb2a1-68a1
2 

             B6=-3k2b2
2-52kb2a1-52a1

2 
    
 Example, 
 
 
         (a1,b2,) = (1,1)  and (k=1) 
 
 
        a)     36+ 1096+ 676+   76+ 616+ 796 =    
                              536+ 596+ 176+ 216+ 896+ 1076 
        b)  596+ 2456+ 1316+ 1676+ 136+ 1596 =    
                          936+ 2116+ 976+ 916+ 896+ 2356 
        c)   276+ 856+ 436+ 736+ 116+ 496 =    
                       296+ 836+ 416+ 456+ 176+ 776 

 

Degree Seven, n=7,  

Let, 
                 

                    
    

    
    

    
    

 =          

                                                          
    

    
    

    
    

        ------- (1)   
 
 
We show that,  

   
for k=1, 3, 5, 7 eqn. (1) has infinitely many integer solutions. 
 
We used the below identity and Theorem. 
 
 Identity (Tito Piezas) (Ref.no.10). 
 
(       )   (       )   (       )   (       )    (     
  )   (       )   (       )   (       ) , 



 
for k=2,4,6,  
where (      )   (      )         

    (      )   (      )         
 
 

Theorem, 
 
 
If       ^k+   ^k+……....+   ^k =   ^k+   ^k+………....+   ^k,  for k=2,4,...2n,  
then(using t) we get, 
 

(    )
  (    )

    (    )  (    )
  (    )

    (    )   
 

(    )
  (    )

    (    )  (    )
  (    )

    (    )   
 
for k=1,2,3,...2n+1, where t is arbitrary integer. 
 
where (      )   (      )         

    (      )   (      )        
 
 Above for k=1,3,5,7 has infinite many solutions, 
   
             =-c+d+ap-bq                                   =-c+d+ ap+bq 
           =-c+d-ap+bq                                    =-c+d-ap-bq 
            =-2c-bp-aq                                     =-2c-bp+aq 
         =-2c+bp+aq                                      =-2c+bp-aq 
           =-c-d-ap+bq                                   =-c-d-ap-bq 
          =-c-d+ap-bq                                    =-c-d+ ap+bq 
 
We have, 

                    
    

    
    

    
    

 =          

                                                          
    

    
    

    
    

        ------- (1)   
 
 
Let [  ,   ,...,   ] = [    ,...,   ]       (k=1,2,...,n) denote 
 
    ^k+   ^k+……....+   ^k =   ^k+   ^k+………....+   ^k       (k=1,2,...,n). 
 
First we apply Tito Piezas's identity to above theorem, we obtain (using t) 
 
 
[                                                     

                          ]   



 
[                                                     

                          ]   
 
where (      )   (      )        

     (      )   (      )        
 
for k=1,3,5,7, 
 
Here, set t = (-c), we can reduce four terms and obtain 

[                                                 
              ]   

 
[                                                  
             ] , 
 
 for k=1, 3, 5, 7 
where (      )   (      )        

     (      )   (      )        
 
 
By transform simultaneous equation  (      )   (      )           

(      )   (      )                                       
we can prove the infinity of  solutions to this equation. 
Since Tito Piezas's identity has infinitely many integer solutions, therefore this identity also has 
infinitely many integer solutions. 
 
Example, 
(p, q) = (3,2) 
 

    [                                                 
              ]   

 
    [                                                 

              ]  
 
    for k=1, 3, 5, 7  
    where,                                           
                                                     . 
 
    Numerical example, 
  
                           

[                     ]   [                    ]  



                                 
 [                               ]   [                               ]  

                                  
[                              ]   [                                ]  

 
(p, q)= (4,1) 
 
   [                                                   
      ]   

 
   [                                                  

       ]  
 

   for k=1, 3, 5, 7  
                    where,                        (          )       

                     
 

One Solution is,   
                             

 

  
    

    
    

    
    

 =          

                                                          
    

    
    

    
    

  
 
For k=7, we get: 

[                       ]   [                           ]  
 
Second solution is, 

                              
 

 [                         ]   [                          ]  
 

 

 

Degree eight, n=8, 
 
                                       =                    
 
There are many solutions for A1

8+ A2
8+ A3

8+ A4
8+ A5

8+ A6
8 = B1

8+ B2
8+ B3

8+ B4
8+ B5

8+ B6
8. 

 
We show that there are infinitely many solutions for 8.6.6 by Sinha's Theorem. 
 
      By Sinha's Theorem, 
 



      A1
8+ A2

8+ A3
8+ A4

8+ A5
8+ A6

8+ A7
8 = B1

8+ B2
8+ B3

8+ B4
8+ B5

8+ B6
8+ B7

8. 
 
      But, if we set (A1+B1=0), we can obtain the solution for (8.6.6) equation. 
 
Theorem 
 
       There are infinitely many solutions for A1

8+ A2
8+ A3

8+ A4
8+ A5

8+ A6
8 =  

                                                                                                      B1
8+ B2

8+ B3
8+ B4

8+ B5
8+ B6

8. 
 
     1. Solving for a1

2 +a2
2 +a3

2 = b1
2 +b2

2 +b3
2. 

 
         Set a1=a(x)+s1, a2=b(x)+s2, a3=b(x)+s2-3(ax+s1), 
 
                b1=a(x)-s2, b2=b(x)-s1, b3=(b-3a)x-s2+3s1…………………..(1) 
 
         Take s1=5a-3b,s2=19a-5b then 
 
         a1

2 +a2
2 +a3

2 - (b1
2 +b2

2 +b3
2) = 0 

 
 
     2. Solving for a1

4 +a2
4 +a3

4 = b1
4 +b2

4 +b3
4. 

       
        a1

4 +a2
4 +a3

4 -( b1
4 +b2

4 +b3
4) = -32x(a+b)(3a-b)*f 

        
        f= (8x2+21x-275)*a2+(-5x2-24x+170)*ab+(3x-3)b2 
       
 
     We must find rational value (a,b) for above equation. 
     Discriminant, 
               25x4+144x3-1280x2-4608x+25600 = y2............................ (2) 
     So, we must find rational numbers x, y. 
 
     U=x and V=y 
 
     V2 = 25U4+144U3-1280U2-4608U+25600................. (3) 
 
     Using  elliptic  curve theory,  and using ‘APECS’ program by Ian Connell, 
      Weierstrass form is, 
 
     Y2=X3+X2-920X+10404............................ (4) 
 
     U = (200X-3248)/(5Y+9X-162) 
      
V = (25344Y-194880X2+3550080X-23468800+4000X3)/(5Y+9X162)2.........(5) 



 
     X = (5V+800-72U-7U2)/U2 
     Y = (200V+32000-4320U-800U2-9VU+45U3)/U3....................... (6) 
 
     Point P = (0,160) solution for (3). 
     Rational point Q(X, Y) on the curve (4) corresponding to the values U=0, V=160 is 
     X=406/25, Y=-396/125. 
 
     So, we get the relation of the curve (3) and the curve (4). 
 
     Point , (P) =(0,160) on the curve (3),   Point, (Q) =(406/25, -396/125) on  
     the curve (4) 
 
     We obtain 2Q = (4939/25, -344112/125) on the curve (4) using APECS. 
     
     As this point on the curve (4) does not have integer coordinates, 
     there are infinitely many rational points on the curve (4) by Nagell-Lutz theorem. 
 
     Point, ( 2P ) = (-200/67, 725280/4489) is given by 2Q using (5). 
 
     We can obtain infinitely many integer solutions for (2)   by applying the group law. 
 
     By Sinha's Theorem, 
 
      A1

8+ A2
8+ A3

8+ A4
8+ A5

8+ A6
8+ A7

8 =  
                                                       B1

8+ B2
8+ B3

8+ B4
8+ B5

8+ B6
8+ B7

8   ---- (1) 
 
      A1=2a1 
      A2=2a2 
      A3=b1+b2+b3 
      A4=2a3 
      A5=b1-b2+b3 
      A6=-b1+b2+b3 
      A7=b1+b2-b3 
 
      B1=a1-a2+a3 
      B2=-a1+a2+a3 
      B3=2b3 
      B4=a1+a2+a3 
      B5=2b1 
      B6=2b2 
      B7=a1+a2-a3 
 
     By Sinha's Theorem, substitute (a, b, x) to (1), then  



     we obtain infinitely many solutions of  (1). 
 
Example, 
 
(x, a, b ) : (8x2+21x-275)a2+(-5x2-24x+170)*ab+(3x-3)b2=0 
 
         Since, a1=ax+s1, a2=bx+s2, a3=bx+s2-3(ax+s1), b1=ax-s2, b2=bx-s3, 
                    b3 = (b-3a)x-s2+3s1………………………………....(2) 
 
         and,    s1=5a-3b, s2=19a-5b then 
 
For, (x, a, b) =(1 , 47 ,82)  we get after substituting  
values of (a1 ,a2 ,a3 ,b1 ,b2 ,b3   ) in equation (2) and equation (1) above,  
 
5658+ 4598+ 4578+ 5528+ 238+ 1168=  
                             4938+ 5758+ 5298+ 4368+ 938+ 728 
(x, a, b ) = (-6, 21, 113)  
 
2118+ 1558+ 598+ 448+ 1658+ 548=   
                                             318+ 2098+ 1218+ 108+ 1118+ 1808 
 
 
(x, a, b) = (6, 15, 139)  
 
 1068+ 2038+ 2958+ 918+ 788+ 2168=  
                                               2328+ 138+ 1698+ 1258+ 2948+ 1268 
(x, a, b) = (-14, 5, 9)   
 
 198+ 278+ 358+   48+   38+ 348=  
                                   178+   78+   18+ 308+ 318+ 368 
 
 (x, a, b) = (-14,3 , -37) 
                     
   1908+ 1118+ 1278+ 138+ 1828+ 848=  
                               1488+ 1958+ 1698+ 718+ 988+ 428 
 
-------------------------------------------------------------------------------------------- 
 
 
Degree nine , n=9, 

            
    

    
    

    
    

 =          
                                                          

    
    

    
    

    
  

 



Andrew Bremner and J. Delorme (Ref. no. 1) showed that, 
 

  
    

    
    

    
    

 =          

                                                          
    

    
    

    
    

  
 
 
for k=1, 2, 3, 9 has infinitely many integer solutions.([1]) 
 
By differrent way, Tito Piezas [10] showed that above equation has infinitely many solutions. 
 

A.Choudhry (Ref. no. 11) showed that    
    

    
 =  

    
    

  
 
           for k=1,2,6  has infinitely many integer solutions   ([3]) 
 
We show that there are infinity many solutions for above (k.6.6) equation. 
 

   
    

    
    

    
    

 =          

                                          
    

    
    

    
    

 ------- (2) 
 
          
 for k=1,2,3,9 has infinitely many solutions. 
 
Set variables as following [equation (3)], 
 
          = 2(a+b)m+(a-b+t)n+w                                           =2(a+b)m+(a-b+t)n-w 
      
        =      -2am+(a+b+t)n+w                                            =-2am+(a+b+t)n-w 
     
         =   -2bm-(a+b-t)n+w                                              =-2bm-(a+b-t)n-w 
    
       =   -2(a+b)m+(a-b+t)n-w                                         =-2(a+b)m+(a-b+t)n+w 
    
         =   2am+(a+b+t)n-w                                               =2am+(a+b+t)n+w 
   
          = 2bm-(a+b-t)n-w                                                  = 2bm-(a+b-t)n+w 
 
 
By using Ajai Choudhry's [Ref. no.11], equation (2) is always equals to zero  
         for degree k=1, 2, 3. 
 
And for k=9 we have :  
 
  

    
    

    
    

    
 =          

                                                          
    

    
    

    
    

  



 
Substituting values of above from equation (3) and after simplification we get, 
 
Expression=18432*a*b*m   (m-n)(m+n)(a+b)(a-b+3t) 

 (                                                     

                                                  

            ) 
 (                                                        ) 

 
So, we have to find the rational solution (m, n) of:  
 
(                                                )   
(                                 )    ............ (3) 
 
So that there are rational solution, 
 

 (                                                )
 (                                 ) 

 
must be square number (   ), then we have to find rational solution (a, b, t, s) of 
 

    
 (               )   (                       )   

      (                              )   
      (                                   )  

                                            ( ) 
 
By computer search, we found a solution (a, b, t)=(3, 4, 27/41). 
 
Substitute (a, b, t)=(3, 4, 27/41) to (3),then (3) becomes to 160/68921(139n-
164m)(139n+164m)=0. 
 
So, we get (m, n)=(139,164). 
 
Substitute (a, b, t, m, n) = (3, 4, 27/41,139,164) to (2), 
then we get following solution, 
 
[x1, x2, x3, x4, x5, x6] = [1025, 291, -996, -1081, 965, -44] 
[y1, y2, y3, y4, y5, y6] = [865, 131,-1156, -921, 1125, 116]. 
 
Next, substitute , 
 
(a, b) = (3, 4) to (4),then we get a quartic equation, 
 



  = -3626*t^4+6888*t^3-26831*t^2+24570*t-3029.............. (5) 
 
Using elliptic curve theory, transform (5) to minimal Weierstrass form (6). 
 
   + UV + V =    -7166374 -22875861928.............. (6) 
 
We get a point P (U, V) = (1026337/64, -1026359837/512). 
 
As this point on the curve (6) does not have integer coordinates, 
there are infinitely many rational points on the  
curve (6) by Nagell-Lutz theorem. 
 
By using point 2P= (t, s)=(3181201/12876603, 6408411316637440/165806904819609), 
we obtain a new solution. 
 
 
[x1, x2, x3, x4, x5, x6] = 
[15677071397, 40208111671,-63297775068,-26458358421, 63560861593,-33396207172] 
[y1, y2, y3, y4, y5, y6] = 
[19383367397, 43914407671, -59591479068,-30164654421, 59854565593,-37102503172] 
        
Example, 
 [ a, b, t] = [1, 3, 6/5],  
 

[                 ]   [                ]  
 
 

[a,b,t]  = [4, 9, 13/3],  
 

[                          ]  [                          ]  

 

Table (A) : 

   (    )                             (   )            : 

                 [                 ] = [                 ] 

 Numerical solutions: For degree’s     n=2, 3, 4, 5, 6, 7, 8 & 9 

n a b c d e f  p q r s t u 

2 1 7 17 30 31 36 = 3 4 19 27 34 35 

3 11 22 4 3 21 5 = 20 7 6 23 9 1 

4 16 480 496 532 798 1330 = 224 342 336 560 950 1292 

5 87 233 264 396 496 540 = 90 206 309 366 522 523 



6 61 3 109 67 7 79 = 21 17 53 59 89 107 

7 129 199 285 71 11 366 = 218 110 367 277 38 51 

8 3 6 8 10 15 23 = 5 9 12 9 20 22 

9 1 13 14 13 18 23 = 5 9 10 15 21 22 
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